
A New Method of Serial Modular Multiplication 
Martin Kochanski 

ADDRESS:   Cardbox Software Limited, Scriventon House, Speldhurst, Kent, TN3 0TU, England.  
mjk@cardbox.com 

ABSTRACT: A novel serial algorithm is described for modular multiplication of large integers and 
a proof is given of its correct behaviour.  Comparisons are made with published designs by 
Brickell [1] and Montgomery [2].  The new algorithm is advantageous where modular 
multiplications need to be performed individually and not chained for exponentiation. 

KEYWORDS:   Fast multiplication, modular multiplication, carry-save arithmetic, public-key 
encryption. 

Introduction 
Many modern cryptographic algorithms rely on modular arithmetic where the modulus is large (of 
the order of 512 to 1024 bits): notably multiplication and exponentiation.  Doing this arithmetic in 
software is slow and so it is important to find efficient hardware implementations. 

The fundamental problem with division and modulo reduction is that they involve conditional 
operations that depend on the result of the immediately preceding operation.  For example, one step 
in the natural implementation of kindergarten long division in hardware is to subtract the divisor 
from an accumulator and to store the result of the subtraction if it is non-negative.  To check for 
non-negativeness effectively means to check the value of the most significant bit of the result, and 
this in turn means waiting until a possible carry has had time to propagate from the least significant 
to the most significant bit.  Even with the available techniques for predicting when carries will 
occur, this leads to a tenfold slowing of the subtraction and thus of the multiplication as a whole. 

For this reason some alternative algorithms have been proposed, of which the most often cited are 
Brickell’s [1] and Montgomery’s [2].  Montgomery’s algorithm requires translation from 
conventional integers into a different number representation at the start and both algorithms require 
translation back into conventional integers at the end of each operation. 

The present algorithm uses a simpler arithmetic unit than Brickell’s (requiring approximately half 
the silicon) and unlike Montgomery’s algorithm it delivers its result directly as a binary integer 
without requiring further conversion.  In circumstances where modular multiplication rather than 
exponentiation is required, these are significant advantages.  In addition, the algorithm’s structure is 
simple and the proof of its correctness is straightforward (compare the complexity of the proofs in 
[5] and [6]).  

The core of the present design is an arithmetic unit (AU) which consists of an array of simple cells 
implementing a carry-save adder, plus a control unit (CU) which examines the result of the 
calculation so far and sends appropriate control signals to the AU. 

Carry-save integers 

When two binary digits are added, their sum can be 0, 1, or 2.  In normal binary addition 2 is written 
as 0 and a carry of 1 is then added to the next digit of the sum (reading from right to left).  If this 
digit is itself 1, it becomes 0 and the carry is added to the next digit on the left.  In certain cases this 
ripple carry process can go through every digit of the sum, and having to allow for the possibility of 
a ripple carry greatly slows down the speed at which addition can be performed. 

In a carry-save design, the carry is stored and not passed on to the next digit.  It is thus necessary to 
have two bits of storage per digit instead of one but the time penalty of ripple carry is avoided. 

We shall follow the general convention of numbering long binary integers from the least significant 
digit so that, for instance, X0 is the least significant digit of X, X1 is the second least significant, and 
so on. 



 

 2

KochanskiSerial Modular Multiplication 19-Aug-2003 

AU design 

The AU contains an accumulator, denoted by ACC, which contains a number that is represented by 
a pair of registers S and C.  We adopt a convention where the weights of correspondingly numbered 
bits of S and C are equal: thus S4 and C4 both have a weight of 24=16.  This identification makes it 
easy to find the number represented by ACC: simply evaluate S + C, treating both S and C as 
ordinary binary integers.  

In its normal carry-save mode, the AU implements the following function: 

 ACC' = 2 × ACC + jX + kR  

where j {-1,0,1} and k {-2,-1,0,1,2} are determined by the CU, and ACC is a carry-save 
integer.  The CU determines the j values by reference to the bits of the multiplier Y, and it 
determines the k values by inspecting the top few bits of the value of ACC in order to ensure that 
the result does not overflow the accumulator. 

In the ripple carry mode the function implemented is  

 ACC' = ACC + kR 

where ACC' is a standard binary integer.  Note that there is no automatic doubling in this case. 

The logic at the core of each cell of the AU is shown here. 

 

The layout has been drawn with two full adders but in fact any design capable of adding five bits 
and giving a three-bit result can be used.  The only constraint is that one of the outputs (BO in the 
diagram) should be independent of one of the inputs (BI): this is to prevent a ripple-carry path from 
propagating through the entire array. 

We define n as the length of R and m as the length of Y (in most applications m <= n, but this is not 
a requirement).  We shall denote the individual bits of registers by subscripts, with X0 being the 
least significant bit of X.  

To simplify the CU design, the most significant bit of R should be 1. If R is too small then it can be 
shifted to the left and X can be shifted to match.  

Using the notation in the diagram above, cell i has its input signals connected as follows: 

CI = latched copy of Ci-1 from the previous clock cycle. 
SI = latched copy of Si-1 from the previous clock cycle. 
RR = ~Ri-1 if k=-2, ~Ri if k=-1, 0 if k=0, Ri if k=1, Ri-1 if k=2. 
XX = ~Xi if j=-1, 0 if j=0, Xi if j=1. 
BI = BO from the previous cell. 

The outputs are connected as follows: 

CO goes to the input of the Ci+1 latch. 
SO goes to the input of the Si latch. 
BO goes to BI of the next cell. 

Apart from the logic shown, some additional logic is used to convert the AU into a ripple-carry 
adder at the end of a multiplication.  During ripple-carry operation cell i has its input signals 
connected as follows: 

CI = latched copy of Ci from the previous clock cycle. 
SI = latched copy of Si from the previous clock cycle. 
RR = ~Ri-1 if k=-2, ~Ri if k=-1, 0 if k=0, Ri if k=1, Ri-1 if k=2. 
XX = CO from the previous cell. 
BI = BO from the previous cell. 



 

 3

KochanskiSerial Modular Multiplication 19-Aug-2003 

During ripple-carry operation the outputs are connected as follows: 

CO goes to the XX of the next cell. 
SO goes to the input of the Si latch. 
The input of the Ci-1 latch is zero. 
BO goes to BI of the next cell. 

The storage required by this cell design is 5 bits per stage: X, Y, R, C, and S.  Y does not need to be 
stored as part of a cell because only the CU uses it, so it will usually be better to implement it as a 
shift register or in RAM.  Implementation of the control logic is made simpler if (as is usual) X and 
R are stored in latches that output both a value and its complement. 

CU operation 

The function of the CU is to decide what multiples of X and R to add or subtract. 

The multiplicand X 

A conventional multiplier design conditionally adds X in each clock cycle, depending on the value 
of the appropriate bit Yt of Y (with t counting down from m-1 to 0).  The present algorithm cannot 
tolerate the repeated adding of X in consecutive cycles, so an alternative method is used, with the t 
now counting down from m-1 to –1.  Ym and Y-1 are both interpreted as 0.  NX is a state flag that 
will be relevant in the computation of R: its initial value is “+”. 

Yt+1:Yt j Action NX 

0:0 0 Do nothing No change 

0:1 1 Add X “-” 

1:0 -1 Subtract X “+” 

1:1 0 Do nothing No change 

It should be noted that implementing subtraction does not add greatly to the complexity of the 
design.  Given that both X and ~X are available (because of the nature of D-type latches), an 
addition-only design requires one NAND gate per cell and an addition/subtraction design only 
requires three.  In a full-custom design, the difference is even less: only one transistor more is 
needed to implement subtraction. 

The modulus R 

This is the crucial aspect of the present design.  A conventional ripple-carry modulo reduction 
device would subtract R from ACC if and only if ACC >= R, so that in effect the only values of k 
needed would be 0 or –1.  Carry-save designs do not have the luxury of knowing the value of ACC 
exactly and they have to guess on the basis of inadequate evidence.  Because a guess is sometimes 
wrong, the computed value of ACC may differ from the correct value by a multiple or R.  The art of 
designing a controller is to ensure that this error is detected before it has exceeded the capacity of 
the AU to correct it. 

We add two extra cells (n and  n+1) are added at the most significant end of the array.  R and X are 
assumed to be zero for i >= n.  At the start of each clock cycle a simple four-bit adder computes the 
following function: 

D = 8 (Sn+1 + Cn+1) + 4 (Sn + Cn) + 2 (Sn-1 + Cn-1) + (Sn-2 + Cn-2) + (Sn-3 • Cn-3) 

— where the Si and Ci values are the ones latched from the previous clock cycle.   

Note that Sn-3 • Cn-3 is just the integer part of ½ (Sn-3 + Cn-3). 



 

 4

KochanskiSerial Modular Multiplication 19-Aug-2003 

D is interpreted as a signed 4-bit integer (with any carry discarded) and the value of k is then 
computed as follows: 

D k 

-9 to –4 +2 

-3 +2 if NX= “-”, otherwise +1 

-2 +1 

-1 0 

0 -1 

+1 -2 if NX= “+”, otherwise –1 

+2 to +7 -2 

Note: there is an ambiguity between D=-9 and D=+7 because they have the same binary representation.  Analysis of 
the overall algorithm shows that D can be -9 only when NX= “+” and can be +7 only when NX= “-”, so NX can be 
used to discriminate between these two cases. 

Overall sequence of operations 

With the AU in its normal carry-save mode, t counts down from m-1 to -1.  At each stage the 
function computed is 

 ACC' = 2 × ACC + jX + kR  

A ripple-carry cycle (“RC1”) is performed, with NX = “0”: 

 ACC' = ACC + kR 

If ACC' is non-negative, the calculation is complete. 

If it is negative, an additional ripple-carry cycle (“RC2”) is performed: 

 ACC' = ACC + R 

Thus the overall work required is m+1 carry-save cycles plus one or two ripple-carry cycles. 

Why the algorithm works 

To make this description more readable, we will assume that R is 8 bits long, and we will write it in 
hexadecimal.  Thus (given that the top bit of R has to be 1) the possible values of R lie in the half-
open interval [80,100). 

We will denote the value stored in the accumulator ACC by z. 

Note that z cannot be less than –2R, because then 2z+2R would be even more negative and the 
algorithm would diverge; similarly, z cannot be more than +2R because then 2z-2R > 2R and once 
again the algorithm would diverge.. 

Interval arithmetic 

In this algorithm, all decisions about the multiple of R to use have to be taken on the basis of the 
calculated value D.  What does D actually mean?  Consider D = +1.  If we calculate ACC from 
C + S by adding corresponding digits together (so that the weights are still binary but the digit “2” is 
allowed) we see that the smallest number that can give D = +1 is 00 0020 00000 and the largest is 
00 0112 2222: thus D = +1 implies that z [40,A0).  Similarly D = 0 implies z [00,60): in fact, the 
width of the interval is always 60. 



 

 5

KochanskiSerial Modular Multiplication 19-Aug-2003 

A simple case 

Let us start by assuming that R has its smallest possible value: that is, that R = 80. 

Suppose that |z| < R.  Then it is possible to look at each value of D and assign a value of k to it so 
that |2z+2kR| < R also.  For example: D = -1 means that z [-40,20).  k=-1 maps this onto [-100,-40) 
and k=+1 maps it onto [0,C0), so the only allowable value of k in this case is 0, which maps z onto 
[-80,40). 

It is also possible to extend this assignment of k-values so that if R < |z| < 2R then |z| will get smaller 
in each iteration. 

Now consider what happens if j=1 so that X has to be added in this cycle.  In that case, the result of 
the calculation is 2z+X+2kR.  Since X [0,R), it follows that the result may have been “kicked” 
upwards by an amount just less than R.  Since we have set up the values of k so that 2z+2kR < R, 
the result after the “kick” is less than 2R, and we are safe. 

However, we are not safe if we immediately get kicked in the same direction again while z > R, and 
this is the reason for the unusual approach to multiplication that the present design uses, with its 
alternate addition and subtraction of X.  After a kick upwards, it is always safe to be kicked 
downwards; and vice versa. 

The general case 

Now let us assume that R has its largest possible value, which is 2n-1: we shall write this as R = 100 
to emphasize its closeness to 2n in the general case. 

Everything that we did for R = 80 translates into the case of R = 100, but there is a snag: for D=+1, 
the only usable value of k is -2 if R = 80 but -1 if R = 100. 

Here is the problem.  Recall that D=+1 implies z [40,A0).  The values of 2z + kR are: 

 R = 80 R = 100 

k = -2 [-80,40) [-180,-C0) 

k = -1 [0,C0) [-80,40) 

The numbers shown in boldface are outside the range [-R,+R) and will therefore cause trouble if we 
get a kick within this cycle: C0 (=1½R) could get kicked up to 2½R and –180 (=-1½R) could get 
kicked down to –2½R: in both cases, the values of z would then diverge and the algorithm would 
fail. 

Rescue comes from the fact that we always know where the next kick is coming from (though not 
necessarily when) because the multiplication algorithm is always a sequence of alternate additions 
and subtractions.  We can use this knowledge to derive k as follows: if you know that you will not 
be kicked upwards, choose k=-2; if you know that you cannot be kicked downwards, choose k=-1. 

Exactly the same problem occurs when D=-3, and the solution is the same. 

The last few cycles 

At t=-1 (recall that t counts downwards) NX=“+” always, since the number of additions and 
subtractions of X in a multiplication is always even. 

Referring to the D-to-k table and allowing for a possible downwards kick from X, we find that 
z  [-100,80) for R = 80 and z  [-100,C0) for R = 100. 

Now perform one further cycle, the one denoted by “RC1” in the original description.  Referring to 
the D-to-k table again and remembering that NX=“0”, this cycle ensures that z  [-R,R) for all valid 
values of R.  If z >= 0, z is the result that we want; if not, we perform the extra ripple-carry cycle 
RC2 to compute z+R. 

RC1 has to be a ripple-carry cycle because at the end of it we need to know for certain whether 
z >= 0.  If z < 0,  then RC2, the cycle that adds R to it, has to be a ripple-carry cycle also, since we 
want the final result to be an integer. 



 

 6

KochanskiSerial Modular Multiplication 19-Aug-2003 

Comparison with other designs 

Brickell [1] 

 Present design Brickell 

Size of core arithmetic unit 2 full-adders 5 half-adders + 3 OR gates 

using Austria Microsystems C35 [3] 546 m², 2.26 W/MHz 1006 m², 5.72 W/MHz 

using NEC CMOS-8L [4] 18 cells 36 cells 

Storage required (X, Y, R, ACC) 5n bits 7n bits 

Multiples of X needed -1, 0, +1 0, +1 

Multiples of R needed -2, -1, 0, +1, +2 -2, -1, 0 

Additional time per multiplication 1 or 2 ripple-carry cycles 10 normal cycles 

Need to convert result to binary No Yes 

• Sizes have been taken from the manufacturers’ catalogues without attempting any 
optimisation.  Both designs require some additional space for multiplexers etc.  Both 
designs require some additional (partly degenerate) cells at the top of an array, but this 
overhead is not significant in the context of 512-cell or 1024-cell designs. 

• Ripple-carry cycles are slower than normal ones but can be accelerated by look-ahead carry 
circuits and typically last between 4 and 6 normal cycles.  

The present design uses considerably less silicon than Brickell’s.  It also does not require a final 
conversion of the result into binary, which is an advantage if the operation required is modular 
multiplication (when doing modular exponentiation, the overhead of one the conversion would be 
negligible). 

Montgomery [2] 

Montgomery’s algorithm is fast and it uses little silicon.  It is very good for modular exponentiation 
but prohibitively slow for modular multiplication.   

The reason for this slowness is that Montgomery’s algorithm represents numbers differently: 
denoting an application of the algorithm by MA(x, y), the algorithm computes MA(x, y) = 2-nxy, or, 
equivalently, MA(2nX, 2nY) = 2nXY. 

Any computation that uses Montgomery’s algorithm must therefore 

1. Compute 22n mod R.  This computation cannot be done using Montgomery hardware, so it 
will be slow. 

2. Convert each operand into the required form: for example, MA(22n, X) =  2nX. 

3. Perform the desired computation.  This requires one use of MA per modular multiplication. 

4. Convert the result into a conventional number: for example MA(1, 2nZ) = Z. 

We leave aside the cost of step 1, since the result depends only on the modulus and in most 
applications a modulus is used for very many calculations. 

If step 3 is a modular exponentiation involving a thousand multiplications, the additional overhead 
of steps 2 and 4 is negligible; but if one wants to use a Montgomery design to perform a single 
modular multiplication, then this requires a total of four applications of MA, which makes 
Montgomery’s hardware almost four times slower than more conventional approaches. 

In contrast, the design described in this paper needs no pre- or post-computation at all, and given 
conventional binary inputs it produces a conventional binary output. 



 

 7

KochanskiSerial Modular Multiplication 19-Aug-2003 

Conclusions 

The algorithm described here is simple: its implementation in silicon is economical and the proof of 
its correctness is straightforward.  Because it delivers its results as binary integers, it is as efficient 
when used for modular multiplication as it is for modular exponentiation.  

[1] Ernest F. Brickell, “A Fast Modular Multiplication Algorithm with Applications to Two Key 
Cryptography”, in Advances in Cryptology: Proceedings of CRYPTO '82, Plenum, New York 
(1983), pp. 51-60. 

[2] P.L. Montgomery, “Modular multiplication without trial division”, Math. Computation, (1985), 
44:519-521. 

[3] Austrian Microsystems: http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33/ 

[4] NEC: http://www.necelam.com/ASIC/gateArray.cfm 

[5] J.K. Gibson, “A Generalisation of Brickell's Algorithm for Fast Modular Multiplication”, BIT 
28(4): 755-764 (1988). 

[6] C.D. Walter & S.E. Eldridge, “A Verification of Brickell’s Fast Modular Multiplication 
Algorithm”, International Journal of Computer Mathematics, vol. 33 (1990), pp. 153-169. 


